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SUMMARY Q//b 0 0 )

A combined theoretical and experimental study is presented of
resonant frequencies and associated mode shapes of truncated conical shells
over a wide range of geometrical and modal parameters. The theoretical
analysis incorporates the effects of bending and membrane rigidity, and of
inertia terms due to transverse motion as well as meridional and circumfer-
ential in-plane motion. The experimental results were obtained for four
conical shell models, with semi-vertex angle 14”, 30”, 45°, and 60°. The

correlation of both resonant frequencies and mode shapes is very good.
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Alj, Bij
all,, B,

a, b

m!? m? Cm!

@]

u, v, w

SYMBOLS

operators, elementatith row and jth column
of operator matrix A, B, respectively

element at ,kth row and mtP column of the submatrix
[alL], [BY, ], respectively

radius of the major and minor base, respectively
Fourier coefficients of mode functions
Eh/(l-vz‘), extensiocnal modulus

Eh3/ 12( 1-v%), flexural modulus

d/dx, differential operator

Young's modulus

operator, element at ith row and jth column of operatcr
matrix H*

thickness of shell
k (l-v)/2, shear constant

log (s2/s1) =1log (a/b), logarithmic completeness
parameter

stress couple resultants

stress resultants

circumferential wave number

transverse shearing stress resultants
distance along meridian, measured from apex
time

displacements of middle surface

= log(s2/s), meridional coordinate

\%



SYMBOLS {Cont'd)

a semivertix angle of cone

Bgs Bg angular displacements of normal to middle surface
€ = hz/ IZaZ, dimensionless thickness parameter

0 circumferential coordinate angle

K shear constant

e =mm/L

v Poisson's ratio

p mass density

Q = wa’\/p(l-vz)/Eg dimensionless frequency parameter
w natural frequency in rad/sec
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INTRODUCTION

The determination of resonant frequencies and the associated mode
shapes for thin-walled, shell structures has become an increasingly
important problem in the design and analysis of complex space structures.
However, the great number and variety of modes in which these shells can
vibrate makes the problem rather complicated and involved. Only for shells
of relatively simple geometry, such as the circular cylinder or sphere, can
the mode shapes be given explicitly in terms of elementary or tabulated
functions. In general, the curvature of the shell varies from point to point,
and the governing differential equations contain variable coefficients, are non-
separable .and do not have explicit solutions.

In the present paper the truncated conical shell is treated. The
circular cone has probably the simplest geometry of all the rotationally
symmetric shells with nonconstant curvature and has obvious importance
in space structures and other applications. The literature on conical shells

has been reviewed in [1]" and [2] and will not be repeated here. It has been
pointed out in [ 2] that the analytical techniques employed for sclving free
vibrations of conical shells have been limited to either energy methods

[3 - 9], or numerical integration procedures [10 - 13]. In many cases,

the assumptions used have restricted the solution to nearly cylindrical shells

*Numbers in brackets refer to references cited at the end of this report.



[5,6, and 9]. Although both polynomial and trigonometric expansions can be
used for the mode shapes in Rayleigh-Ritz methods, the resulting frequency
will not acquire satisfactory accuracy unless a sufficient number of terms are
retained in these expansions. A distressing aspect of the shell vibration
problem is the fact that a large number of widely different modes may
respond to a given excitation. Therefore, it would appear essential to
identify all of the resonances within the frequency spectrum of interest in
order to avoid, if possible, large deflections or stresses. Above the
minimum resonant frequéncy, the density of resonance for thin shells is
generally very high, so that rather accurate analysis is needed if they are to
be avoided.

In (2], Hu has presented a method of solution for the truncated cone
with homogeneous boundary conditions which has the great advantage that it
retains the mathematical features of the vibration problem in that the
natural frequencies and mode functions are obtained as the eigenvalues and .
associated eigenvectors of a coefficient matrix., Reference [2] presents the
general formulation of the problem with numerical results presented for
membrane solutions of axisymmetric modes only. In this paper, solutions
are obtained for nonsymmetric transverse modes, including both the membrane
and bending stiffness. These modes, referred to by some authors as 'bell
modes'" or ''breathing modes, "' generally have more physical significance

and practical importance than the many other modes possible. In general,



these modes possess the following characteristic features: (1) the transverse
motion predominates; thus, the vibration is usually visible and audible,
(2) the resonant frequencies form the lowest group in the entire frequency
spectrum, and (3) the response of normal displacement to external distur-
bance is usually larger than the response in other modes; therefore, from
the structural view-point, resonance of transverse modes should be care-
fully avoided.,

In order to verify the degree of validity of the theoretical predictions,
experiments were performed on four different shell models having widely
different cone angle. Correlation is presented for both resonant frequencies

and mode shapes for the shells freely-supported at both edges.



ANALYSIS

Matrix Form of Governing Differential Equations

A set of differential equations in terms of displacements governing
the free vibrations of truncated conical shells has been derived in [2] %,
These equations incorporate the effects of both bending and membrane
stresses, and retain inertia terms for both the transverse motion and the
in-plane, meridional and circumferential motion. The terms corresponding
to rotary inertia and transverse shear deformation are included for the
meridional direction only, analogous terms for the circumferential
direction being neglected. A matrix equation for the displacement vector

U = {un Vo Wy ﬁsn}ls obtained in the form

HYUF = Qfux (1)

where H' is a (4 X 4) operator matrix containing the differential operator,
and € is the dimensionless frequency parameter

Q= wanp(l - vV2)/E (2)
The operators H*ij, i, j, =1,2,3,4, of the matrix H* are given in
Appendix I. The dimensionless mode functions u,, v, wp and Bgp are

defined by the following separation process:

*See particularly pages 3-12, 17-22.
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u aup
w »>=< aw, » sin (nf + 6) cos wt (3)
Bs Bsn
v = avy cos (nf +60) coswt (4)

The shell geometry and coordinate system is defined in Figure 1,

The four equations in (1) are coupled secoﬁd—order differential
equations with variable coefficients. The independent variable can be
either the meridional distance s measured from the apex, or the transformed

variable,

x = log ( 22) (5)

s

which is dimensionless and will be used throughout this analysis., It is
evident that the mode functions are continuous, smooth functions of x in

the interval 0 x <L, where

L,:log(sz) (6)

s1
It might be remarked that if%the semi-vertex angle a = 0 (cylindrical shells),
the mode functions are known to be expressible in trigonometric and
exponential functions of s; while if a = /2 (annular plates), the transverse
vibration is uncoupled and the mode function w, is expressible in Bessel
functions of s. In the general case, however, the mode functions cannot be
expressed in terms of any known tabulated functions and must be solved by
some numerical process. In the present analysis they are expanded into

Fourier series with the coefficeints determined by a Galerkin procedure,



Calculation of Frequencies and Modes

The boundary conditions for shell problems are always hard to
prescribe, especially to represent experimental or actual conditions. Two
different end conditions will be discussed here, both being simply supported
with reference to the transverse displacement but differing with regard to
the in-plane meridional restraint. Iﬁ the first case the displacement in the
meridional direction, u, is taken as zero at the boundaries, and then is
relaxed in the second case., In bothcases, the circumferential and transverse
displacements as well as the moment in the meridional direction are assumed
zero. The first condition will be referred to as simply-supported and the
second freely-supported.

Simply-supported edges with meridional constraint. The boundary

conditions are, u, = vy, =W, = M =0, at x = 0, L. The last condition,
n n n sn

Mgy = 0, is equivalent to

dBgn
dx

- VvB,p=0, at x =0, L. (7)

Therefore, the following truncated Fourier expansions will satisfy all the

boundary conditions term by term

M
_ zl . mmX (8a)
Up = a, sin T
m =1
M2 . mmx
Vp = ;: b, sin T (8b)
m =1
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M3
Wn = Cyp sin 2T (8¢)
m = 1 L
a, M
° !
pon =0 T con 2 52
m =1
where My, ... , My are properly chosen integers. For simplicity, we will
use a new variable
q, o4
3sn = e'vxﬁsn = —29+ z d,, cos m;_rlx (84')
m=1
Then (1) can be transformed to
u, up
.. Vn V.
o2 n .
[Alj] N =Q wp d,j=1,..., 4 (9)
Pk Bt
where
— 5
grll g*le gel3 H¥ 14 vx
2l qree gre3 H 24eVX
[ Alj] = (10)
w31 w32 e33 H*34ev¥
e’ VXH*41 e“"XH*42 e VX 43 e"VXI—I*44te'VX

Note that the operators H*1] and e¥™

are in general not commutative. *
We assume that the Fourier expansions (8) are termwise differentiable
twice. Substitution of (8) into (9) and application of the Galerkin procedure

yields the following matrix equation governing the Fourier coefficients

a's, b's, c's, and d's:

*Refer to [ 2], pp. 12-17
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- M) Mz M3z Mg+l
N A A
- - -
M, { 211 [Alz 13 [A14] (a1 (ay
L km km]J | km] km .
B 1T 7 '
ve (|l Pl ) aell]n| v
- - b2l % (11)
s { | [adk] (o] [ag2] [a28]]] o
- - .
1
vast{ | [agt] [ag2] [ag3] [agg]l]do] [ )
L - - J U J <
where
. L -
A;Jm_ i— in k; (Ale1nr—n—E<)dx i,j =1, 2, 3
0
4 2 L krx i4 mmx
Ai—{m— = sin Al% cos dx i=1, 2,3
¢
. > L kmrx .
A% = _.f cos T [ A% sininl}5>dx j=1,2,3
km L L L
0
2 L kwx
A4 - = cos T (A44cos~r—1-1—T—r-}-<)dx
km L L L
0

Note that whenever m = 0, cos r-n—Ei( should be replaced by 1/2, The

sixteen algebraic formulas which generate the submatrices [A%{J'm], i,j =
1,..., 4, are given in Appendix II. The eigenvalues and eigenvectors of

the coefficient matrix, which can be readily calculated on a digital computer,

give the natural frequencies and associated mode functions of the simply-

supported conical shell.



Freely supported edges without meridional constraint. From

numerical results computed by applying the matrix equation (11), it was
found that the above formulation yielded higher frequencies than those
measured in the experiments, A closer examination of the edge supports
used in the experiments indicated that little constraint was provided to
the meridional, in-plane motion. Therefore, the meridional constraint,
u = 0, at x = 0, L, was released to obtain a better description of the
experimental boundary condition and, at the same time, illustrate the
relative influence of the longitudinal constraint.

Replacing u, = 0 by Ng,, = 0, or equivalently

du,

— -~ Vun =0, atx =0, L (12)
dx

the series (8a) should be replaced by

In addition to using (8d'), define a new variable

5k 20 Ml
u, = eVX = + z a, cosmﬁx:' (8a")
m =1 L

Then (1) can be transformed to

Vn Vn
.. -2
[BY] W Q Wiy (13)



where

[ B =

Substituting (8a', b, c,

e VEH

e = VXH’P

#11,

:::Zle

k41,

vx

vX

*31lavx

vX

e ‘-VXH* 12

H* 22

H* 32

e ""’,XH*LLZ

e~ ‘VXH* 13
23
H*3 3

e = VXH>:<43

10

e-va* 1 4evx
H*Z4evx

H*34evx (14)

e VX H* 44 vx

and d') into (13) and applying the Galerkin

procedure, we can readily obtain a matrix equation similar to (11)

where

Bij
km

T

Bl
2]
Bik)
Btk

e e

O'g\'

il

Okﬁ

2
L

s
LB km]|
(22 ]
_?kny
[ 32

n2%]

u )
42

CcOs

cOs

sin

sin

O'\.

13 7 14 (" ay)
[Bkm_ I:Bkm] :O
23] [w.24 b
[Bkm_ [Bkm] :l

33 341§ & =
[Bkrn] [Bkm] : 1
43 ] 44 4
[Bkm_ [Bkm] 1\ foz
kwx -Bij cos M2 1 g%
L | L
EEE PBij sin XX | dx
L | L
kmx -Bij cos r_n__n_x_ dx
L. L -
kmx [ pij gip M | gy

(15)

i,]

As mentioned before, whenever m = 0, cos r_nirri( should be replaced by 1/2.

The sixteen algebraic formulas which generate the submatrices [Bij :I .
km

i, 1,...

, 4, are given in Appendix III,
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Numerical Procedure

It can be seen from the coefficient matrices [Aij ] or [Bij
km km

that the frequency parameter 2 and the mode functions depend on six

parameters:

s
Q= Q(a, —Z, E., v, n, m) (16)

s] a
Foisson's ratio v is taken as 0.3 in all calculations, The first three are

geometric parameters and have prescribed values for the four models

tested, These are given in Table 1,

TABLE 1,
Model No. a 52 /81 h/a a (in.)
1 14, 2° 2,23 0.00166 6.07
2 30.2° 2.27 0.00127 7.95
3 45,1° 2.25 0.00112 8.96
4 60.5° 2.25 0.00101 10. 00

The circumferential wave number n was assigned selected integer values
ranging from 3 to 28, to cover all modes being excited in the experiments.
The number of terms M, .., My, retained in the Fourier series is determined
by the accuracy requirement. When n is not too large, a typical set is
M) =4, M) =4, M3 =5, My = 6, which yields a (21 X 21) coefficient

km

matrix [Bij ] This matrix is then inverted and the two largest eigen-

values are calculated by iteration, giving the two lowest natural
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frequencies and associated modes, m =1, 2. For very large values

of n (say 24-28), it was found that a (28 X 28) matrix was needed to
predict the frequencies with reasonable accuracy. No attempt was made
to calculate the higher modes with greater accuracy because of the limited

available computer storage capacity.



EXPERIMENTAL APPARATUS AND PROCEDURE

In order to verify the accuracy of the numerical procedures out-
lined in the preceding section, experiments were run on four shell models

having the geometries described in Table 1. The experiments were simi-~

13

lar to those described in [13] for cylindrical shells. The essential features

of the experiments are that the steel shells are driven by a pulsed mag-

netic field,and the transverse displacement is measured by a noncontacting

probe. In this manner, neither the excitation nor the measuring system
adds additional mass or stiffness to the thin shell. Mapping of the trans-
verse displacement mode shape allows direct correlation with the eigen-
vectors as wellas the eigenvalues calculated from the appropriate coeffi-
cient matrices.

The shell models were formed from 0.010-inch thick rolled steel
shim stock. The cones were formed from the flat sheet with one welded
seam along a generator of the cone. This seam was arc-welded with a
butt-joint so that a negligible discontinuity was formed in the shell.

A schematic of the experimental apparatus and instrumentation is
shown in Figure 2,and a general view of the setup in Figure 3. The shell
models are supported from a mandrel of a vertically mounted lathe bed.
The boundary support shown in Figure 2 is that used to simulate the freely

supported edge condition. The right-angle groove in the circular plate
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supporting the lower end is machined to a close tolerance fit with the small
radius b of the shell. The upper circular plate is positioned with a slight
axial load to give a line support around the large radius a of the shell. The
only in-plane restraint is the slight friction between the shell and the support.

Excitation to the shells was produced by a pulsed magnetic field from
two small electromagnets located at opposite ends of a diameter of the shell.
The frequency of the excitation was controlled by an oscillator driving the
electromagnets through a power amplifier. In order to optimize the excita-
tion of each mode, a phase control is added so that the two electromagnets
can be operated either in-phase or out-of-phase depending upon the circum-
ferential wave number n being either even or odd. The position of the
excitation along a generator (s direction) of the shell is also adjustable so
that various axial modes may be optimally excited.

The transverse displacement w is mapped with an inductance type
displacement probe, mounted on a long lead screw so that it can traverse
the shell in the s direction. The entire shell and excitation system may be
rotated 360° on the central mandrel allowing a circumferential mode shape
plot also. For direct plotting ofthe mode shapes, the position of the dis-
placement probe with respect to the shell is given by a rotary potentiometer
on the mandrel and a resistance slide wire on the lead screw assembly.

The output signal from the displacement detector is conditioned through a

tracking filter, tuned to the excitation frequency. The filtered output signal
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can be recorded on either an oscilloscope, frequency counter, or x-y pen
recorder for mode shape plots.

Resonance is determined as the frequency at which maximum trans-
verse amplitude response is obtained. The accuracy of this method depends
upon the sharpness of the amplitude-frequency response curves which, for
low damping structures such as the shells tested, is sufficient to distinguish
resonances separated by only a few cycles per second. Frequencies are
read from an electronic frequency counter. Modes may be identified most
easily by observing the phase relationship between the driving signal from
the oscillator and the response signal from the displacement detector.

Upon crossing a nodal line the phase shifts 180° and is easily detected by
the rotation of the Lissajous figure on the x-y oscilloscope. Mode shapes
can be plotted directly on an x-y pen recorder, with the rectified displace-
ment amplitude on the y axis and the circumferential or meridional position

on the x axis.
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EXPERIMENTAL RESULTS AND CORRELATION

Resonant Frequencies

The resonant frequencies for the freely-supported cones are pre-
sented graphically in Figures 4, 5, 6, and 7 for the four shell models
given in Table 1. The primary geometrical parameter being varied is the
cone angle a; however, the thickness parameter h/a is also varied to some
extent in order to maintain models of reasonable dimensions. The non-
dimensional frequency parameter £ is plotted against the circumferential
wave number n. The theoretical natural frequencies are indicated by the
solid, continuous curves, although it should be noted that n is a discrete
parameter having only integer values. The theoretical and experimental
frequencies are also given in Table 2.

The correlation between theory and experiment is seen to be quite
good, particularly for the lowest axial mode, m = 1. The divergence
between theory and experiment that does exist has two primary causes;
namely, satisfaction of the assumed boundary conditions, and the finite
truncation of the Fourier expansions for the mode functions. The mathe-
matical and experimental boundary conditions have been described in
preceding paragraphs. A problem arises in prescribing the in-plane dis-
placements, u and v. For the 45° cone (Figure 6),two sets of theoretical

curves are calculated and plotted, one being simply-supported and the



TABLE 2. THEORETICAL AND EXPERIMENTAL NATURAL
FREQUENCIES, @, FCR CONICAL SHELLS TESTED

m 1 2 3 4
11\ Theo Exper Theo Exper Exper Exper
Shell Model No. 1 {(a = 14.2°)
0.130 0.121 0.387
0.0846 0.0756 0.258
0.0582 0.180
0.0575 0.0534 0.141 0.138
0.0567 0.118
0.0660 0.0¢40 0.110 0.108 0.177
0.0735 0.114 0.166
0.0849 0.0832 0.127 0.124 0.169 0.216
11 0.0934 0.135 0.179
12 0.109 0.106 0.164 0.144 0.187
13 0.120 0.160 0.197
14 0.141 0.132 0.209 0.174 0.213
15 0.146 0.189 0.226
16 0.179 0.163 0.260 0.203 0.246
17 0.181 0.223 0.262
18 0.223 0.200 0.319 0.241
19
20 0.259 .236 0.348
Shell Model No. 2 (a 30.2°)
4 0.236 0.578
5 0.157
6 0.130 0.122 0.360
7 0.098
8 0.095 0.090 0.244 0.232
9 0.088 0.204
10 0.096 0.092 0.193 0.187
11 0.101 0.179
12 0.109
13 0.117 0.189 0.260
14 0.133 0.130 0.206 0.200 0.268
15 ' 0.141 0.209 0.277
16 0.155 0.153 0.230 0.224 0.290
17 0.167 0.237 0.299




TABLE 2.

THEORETICAL AND EXPERIMENTAL NATURAL
FREQUENCIES, ¢, FOR CONICAL SHELLS TESTED (Cont'd)

m 1 2 3 4
_::: Theo Exper Theo Exper Exper Exper
Shell Model No. 2 (a = 30.2°) (Cont'd)

18 0.188 0.181 0.270 0.248 0.315
19 0.195 0.332 0.397
20 0.211 0.280 0.348
21 0.228 0.297 0.365
22 0.262 0.244 0.372 0.316 0.384
23 0.264

24 0.282 0.356
25 0.302 0.378
26 0.344 0.323 0.459 0.402
27 0.345
28 0.368
29 0.391

30 0.415

Shell Model No. 3 (a = 45.1°)

4 0.324 0.628

5

6 0.186 0.164 0.458

7 0.137

8 0.128 0.120 0.333

9 0.112 0.254

10 0.108 0.108 0.259 0.230

11 0.110 0.213

12 0.119 0.116 0.227 0.210 0.344
13 0.125 0.214 0.319
14 0.138 0.133 0.229 0.225 0.307
15 0.143 0.236 0.309 0.380
16 0.158 0.153 0.250 0.322
17 0.163 0.255 0.334
18 0.179 0.176 0.265 0.266 0.350
19 0.188 0.281 0.362
20 0.201 0.293 0.375
21 0.217 0.389
22 0.232 0.319

18



TABLE 2.

THEORETICAL AND EXPERIMENTAL NATURAL
FREQUENCIES, ©, FOR CCNICAL SHELLS TESTED (Cont'd)

m 1 2 3 4
;::> Theo Exper Theo Exper Exper Exper
Shell Model No. 3 (a = 45.1°) (Cont'd)
23 0.246 0.332
24 0.278 0.261 0.378 0.348
25 0.278 0.358
26 0.290
27 0.307
28 0.323
29 0.341
Shell Model No. 4 (a = 60.5°)
6 0.179 0.161 0.392
7 0.134
8 0.126 0.119 0.306 0.258
9 0.109 0.227
10 0.109 0.104 0.249
11 0.106
12 0.110 0.108 0.221 0.188
13 0.112 0.193
14 0.123 0.121 0.211 0.192
15 0.128 0.202
16 0.150 0.237 0.211 0.285
17 0.146 0.221 0.299
18 0.158 0.233
19 0.170 0.244
20 0.201 0.186 0.292 0.259 0.335
21 0.200 0.277
22 0.214 0.296 0.366
23 0.229 0.314
24 0.267 0.245 0.377
25 0.265 0.356
26 0.282
27 0.302
28 0.340 0.324 0.455
29 0.342

19
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other freely-supported. These two differ only with respect to the meri-
dional restraint on the displacement u as previously discussed. The effect
of relaxing this in-plane constraint is quite pronounced, with the freely-
supported condition giving obviously better agreement with experiment. It
is this boundary condition that is used for correlation with the other shell
models. Although, the effect of the circumferential restraint at the boundary
is expected to be less significant, for low values of n it may also have some
influence, since, for these modes, the spacing between the nodal points on
the boundary is greater, thereby allowing greater circumferential dis-
placements. The imposed circumferential restraint may partially account
for the theoretical frequencies being high at low values of n.

Truncation of the series expressions for the mode shapes is also
a serious source of error, particularly at large values of n where the mode
shapes become highly skewed toward the large end of the cone, as will be
shown later. Increasing the number of terms in the series was always
found to improve the accuracy. As mentioned earlier, some judgement is
required to select the optimum relative number of terms in each series to
obtain maximum accuracy for a given size matrix. This selection may
change as the parameters of the problem are varied, thereby affecting the
relative influence of the respective displacement or stress components.

The frequency plots for the supported conical shells are characterized

by having a minimum frequency for each axial mode number m, occurring
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at some value of n. This is similar to the behavior of the supported circu-
lar cylindrical shell. The value of n at which the minimum frequency occurs
is dependent upon the other parameters of the shell, a, sz/sl, h/a and v.
For low values of n, the frequency curve turns sharply upward because of
the increasing influence of the membrane stiffness in this region. For

large n (short wavelength), the stiffness is contributed predominantly by

the bending stiffness of the shell.

We might point out again a fact which is obvious from examining
the frequency plots, that the density of resonant frequencies is very high.
This often results in difficulty in experimental separation of some neigh-
boring modes. Also, the amplitude response at resonance does not appear
to have any uniform progression with frequency or mode number. This
last factor must be tempered by consideration of the distribution and posi-
tion of the forcing function as well as possible nonuniform damping of the
various modes.

It is difficult to make general statements about the frequency spec-
trum for freely supported conical shells, since it is influenced by all six
independent parameters in (16). In order to get some picture of the influence
of cone angle aonthe frequency parameter, the theoretical curves in Figure §
were constructed. At the extreme angles of 0° and 90°, £ increases reg-
ularly with n, while at intermediate angles the relationships between §2 and

n is more complicated. For the particular parameters chosen for this
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plot (h/a = 0.01, sp/sy =2.25, v=0.30),the minimum frequency always
occurs for n £ 5. Also,the stiffest shell in transverse vibration appears
to be in the neighborhood of a = 50°,

Since for small values of a, the conical shells should behave like
circular cylindrical shells, it would be interesting to compare Figure 8
with the similar results given by Arnold and Warburton for thin-wall
cylinders (Fig. 2, Ref. 14). It may be noted that the frequency spectrum
of cones near a = 0° in Figure 8 is strikingly analogous to that of cylinders
near X = mma/f = 0 in Figure 2, Ref. 14, where { is the total length of the
cylinder. It is easy to show that, for small a, the wavelength factor A

is proportional to cone angle a:

~ mTa ~ g
A= ~ a
sp -85} l-sl/SZ

In the case under consideration, s/s, = 0.444, therefore, A = 5.65a
(a in radian). The values of 2 at a = 0 and \ = 0 agree closely, since both
represent the limiting case of an infinite cylinder with h/a = 0.010. How-
ever, the frequency curves for the cone ascend faster than corresponding
curves for the cylinder. This is to be expected as an apparent consequence
of the increased stiffness of the conical shell even if it is only slightly
tapered.

A decrease in the thickness parameter h/a generally lowers the
resonant frequencies because of decreased stiffness, and shifts the mini-

mum frequency to larger values of n, which indicates a change of relative
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influence of bending stresses and membrane stresses. For h/a on the
order of 0.001 as fof the shells tested, the minimum frequency occurs
at n < 11 while in the example of Figure 8, h/a =.01, the minimum fre-
quency occurs at n < 5. This is due to the fact that bending stiffness
increases as (h/a)3 while the membrane stiffness is proportional only to

(h/a).

Mode Shapes

Both experimental and theoretical normalized axial mode shapes
are plotted in Figures 9 through 13 for various modes and all four shell
models. The theoretical modes are in most cases obtained with a 5to 7
term truncation of the Fourier series for the normal displacement w.

In general, good agreement is obtained. The circumferential mode shapes

are, of course, proportional to sin nf. The nodal pattern for all the modes
observed always consisted of parallel circles and equispaced meridians as

predicted by the theory.

The most striking feature of the axial mode shape is its strong
dependence on the circumferential wave number n for a given shell geom-
etry. This is illustrated in Figures 9, 10, 11, and 13 for m = 1 and in
Figures 9 and 12 for m = 2. In each case, the position of maximum dis-
placement or antinode shifts toward the large diameter of the shell,

s = s,, with increasing circumferential wave number n. For low values

of n and in the neighborhood of the minimum frequency, the displacement
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is relatively symmetric and therefore can be described with a fewer number
of terms in the Fourier series. This is the region where the best agree-
ment is obtained for the resonant frequencies. At large values of n, the
displacement becomes highly skewed toward the large end of the cone,
with little transverse motion occurring at the small end. Obviously, to
achieve good agreement in this region, for either mode shape or resonant
frequency, will require retaining additional terms in the series, not only
for the normal displacement w,but also for the other displacement or
stress components. Physically, the suppression of normal displacement
near the small end of the cone at large values of n is due to high stiffness
and the short distance between consecutive nodal meridians in this region,
i.e., there are 2n points of zero normal displacement around a circum-
ference. The displacements between these nodal lines are therefore
necessarily smaller near the minor end. The curvatures and stresses in
this region, however, are not necessarily small.

The geometry of the shell also has an effect on the normalized
mode shapes. For comparison, the same mode, n =8, m = 1, is plotted
in Figures 9, 10,11la and 13 for the four shell models. It is interesting to
note that for this mode the theoretical mode shape for a = 14.2° is skewed
toward the large end, s = S5 while for the other three shells, a = 30.2°,
45.1°, 60.5°, the theoretical mode shapes are skewed toward the small
end, s = s;. This seems dependent on whether the circumierential wave

number n = 8 being larger or smaller than the wave number at which the



25

minimum resonant frequency occurs, and therefore whether the bending
or membrane stresses are more influential. The experimental results for
this mode are not as consistent on this point, particularly for a = 60.5°.
The general observation appears to be valid, however. For instance, in
Figure 9 for a = 14.2°, the moden =8, m =1 is skewed towards s = $2,
and the mode n = 8, m = 2 is skewed towards s = s;. The former is on
the bending portion of the 2 vs n curve while the latter is at the minimum of
the curve and more strongly affected by the membrane effects.

A few more comments are appropriate with regard to the theoreti-
cal and experimental mode shapes. The negative deflections indicated
for some of the theoretical mode shapes for m = 1 are a result of the
limited number of terms in the series expression for w and should not
imply the existence of an additional nodal circle. In addition, the experi-
mental displacement curve is generally shifted to the right with respect
to the theoretical curve, perhaps due to the experimental boundary condi-

tion which held the small end of the cone more tightly than the large end.
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CONCLUSIONS

It is felt that the following conclusions may be justifiably made from
work presented.

l. The analytical procedure used is adequate to predict the resonant
frequencies and mode shapes for transverse vibration of truncated conical
shells over a wide range in the geometrical, material and modal parameters.
The numerical procedure is particularly efficient for shells with homogen-
eous boundary conditions, where, as in the example presented, each sub-
matrix of the coefficient matrix are generated by a single close-form
algebraic expression. While still applicable to nonhomogeneous boundary
conditions, much of the computational efficiency of the method may be lost
because a rather complicated form of series expansion has to be employed
to represent the mode functions, and an appropriate transformation [such
as the one which transforms (1) into (9) or (13) used herein] must be applied.

2. The accuracy of the analytical results is strongly dependent
upon the degree of satisfaction of the boundary conditions and the number
of terms retained in the series expansion of each of the mode functions,
the latter being particularly significant for the higher modes.

3. The order of occurrence of the resonant frequencies in terms
of the modal parameters m and n is strongly dependent on the geometry of

the shell.
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4. For the shell supported at both edges, a minimum resonant
frequency for each m value occurs, which separates that branch of the
frequency spectrum predominantly associated with membrane effects from
that associated with bending stiffness.

5. The modal shape in the meridional direction is strongly depen-
dent on the circumferential wave number n, with the predominant trans-

verse motion shifting toward the larger end of the cone as n increases.
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APPENDIX I

The elements of the operator matrix H*
gl 2% [_Sinza (F2- 4 _1;_1;1\;_]
Ha<12 = -n sin a e‘?'X [___l+v¢0, + 3-v]

2 2
H*13 = sinacosa e2X (v + 1)

H*14 = ¢

H>:<21 = n sina e?X l:l+vﬂ- 3-v
2 2

]

*22 -
H = er |:— 1-v sinza(ﬂz-l) + nz]

2

H>,=23 = -ncosa eZX + €ncosa e4X [l_v sin Za (ﬂ2+2ﬂ) _nZ]

H*24 = €nsina cosa e3X [1—?}-,0/— 3-V]

H*3! = - sina cosa e [vd - 1]
%32 2x

H = -ncosae

33 - er[_kS sinf a2 +coszo.]

- enletx [l_TV sinz'ct(.d2 + Zﬂ)-nz]

%34 -
H 3 =kssinaex(ﬁ-l) -€n‘zsinae3X [L-izlﬂ'—:a—?:l]
H>§<4l - 0
H4% 20

. 1+
H 43 _ -(ks/E) sina e¥ + n? sina e3% [ Zv,ﬁ’+ Z]
Ha<44 = e2X [- sina (ﬂz-l) + lév n&] + (ks,»"e)

where ﬂ: d/dy is the differential operator.

43
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APPENDIX I1

Let k and m be positive integers or zero, and v be any positive real

number. Define

L
P(’Y) =2 f X gin KTX sin 21X ¢
km 1, § L L
- yL ) yL [(_l)k+m 'yL_l]
T U422 4 (k-m)2n?  y 212 ) ©
¥ m)“mw YL+ (k+tm)“c
(v) - -2— e‘yX sin ijx cos rnvrxd
km L 0 L L
(k-m)m
- (k-m) : (k+m)m [(_l)k+me'yL=1]

2 2 2 2 2_2 2
¥y L +(k-m) = vy L +(ktm) w

L L
_ ¥ . ¥ [( _pyktm yL_ 1]
.YZL2 + (k-rn)zﬂ'Z 'yZLZ + (k+rn)2'1n'2

When ¥ =0, and k=m, the above formulas are indeterminate. The integrals

can be easily evaluated as following

~—

=1, pO.g RrO_,

0) _ (0) _
Pl =1+ alid=o 00 00

kk » Rk

Denote po=—

The coefficients Aligm for simply supported edges with axial constraint are:
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km

12
Axm

13
km

14
Axm

Afi

22

Akm:

23
km

24

24
Akm

31
Akrn

32
Akrn

33
Akm

34

i

[sm a (p +1) + — ]Pﬁf)
-n sina [ &Z) + P{(Z)]

sina cosa [V[-LQ(ir)] +P£{ )]

0

1]

wal? g)]

l-v . 2 2. 2 2)
i: > sin“a (p“+1) + n :l P%(m

) [1
nsina

(2) 1-v

—(l-v)p.sinza Q%ér)]:l

ko

22,2 .
Apg = - €nsina cosa(3—zv—v) Q(‘3+v)

4

- €n sina cosa
2 km

- sina cosa [VHQ§<§’I)] - P%(ir))]

I

-ncosa Pﬁ%

2 (2)

=(k e smza + cos a)P

+ €né I:(-—l _ZV }.LZ sinza + n?‘) f:fq)]

2

+€n” sina I: +

1+v (3+V)
P
2 P km 2

-ncosa Py ' - €ncosa I:( 5 pz sina +n2) P

1+V HP(3+V) ¥ ._3__—_3‘/____‘}.‘_&.

L

(1-v)p sin®a Q%)

Al = -kgsina [pqutv) +(1 )Q“*_V)]

3-2v-v Q(3+v)

km

m=1 ~M;
m=1 ~ M,
m=] ~ M3
m=0 ~ My
m=1 ~ Ml
m=1 ~ M,

(4)

km
m=1 ~ I\/I3
(m=0)
o]
m=1 ~ My
m=1 ~ M
m=1 ~ MZ

)

m=1 . M3y

_ _.2
= -kg sina [l-v Q(l+v)] + €n? sina |:———3 2vov Q%jo-h}):l
4

(m=0)
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}
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k=1~Ml

k=1~M,

k=l~M3
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Akrn

42
Akm
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ko
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Akm
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:O m:l~Ml

0 m=1 ~ M
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APPENDIX III

The coefficients Bllglm for freely supported edges without meridional

constraint are

11 _ .2 1-y 27 1 .(2) A
Bko = [sm a(l-v2) + 5 n ] E—Rko (m=0)
11 _ . 2 1- 2 2 . 2
Bym = [smza(p +1-v2) +Tvn ] R{(rr)] -2vp sina Qf,n{(
m=1 ~ Ml
12 . Itv _(2-v) 3-v _(2-V)
Bym = -nsina [ > MR 1cm +-—2—ka m=1 ~ M } k=0 ~M;
. 2- -
Blif?,n = sina cosa [V“Rl((mV) + Qf’ikV):l m=1 . M,
14 _ -
Bkm - O m—o ~ M4 J
21 ) 3-24,-4,2 ~
Bko = -nsina [—;—V- Q}((ZOW)] (m=0)
BZl = g sina |:1+v pletv)y ——-——3-21/_"2 Qletv) m=1 ~ M
km 2 b km 2 km !
22 1- . 2
Bym = [ ZV 51n2a(p,2+1) + nz] Pl(m)] m=1 ~ M,
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. “2u-yp2 3+
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